If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+23x-8.7=0
a = 3; b = 23; c = -8.7;
Δ = b2-4ac
Δ = 232-4·3·(-8.7)
Δ = 633.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{633.4}}{2*3}=\frac{-23-\sqrt{633.4}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{633.4}}{2*3}=\frac{-23+\sqrt{633.4}}{6} $
| 3/24=33/a | | -5(6-7x)-(1-x)=4(x-5) | | x=3=2x-7 | | 3x-10=-45 | | 3w=-5.5 | | -4-4(3+2n)=12(n+7) | | 498+x-398=1808 | | 14+4c=34 | | -2(7)=z | | 1*1/4=d/80 | | j-18=-9 | | 11/4=d/80 | | -5(4-x)=-8(x+9) | | 103.48/a=-31.36 | | 2x-154;x=6 | | 10.5x=28.75 | | 3x+5=10–6x | | 6(-b+12)=77 | | 315=70x | | 10+z+6=18 | | C(48)=10x+600 | | 21t=18 | | -52-4w=84 | | 32u−8−12u=22u−66 | | -2(x+3)3/4=-32 | | -25=1/5(10x-2)+3x | | -5(r-2)=-5(r+7) | | 8-x-6=0 | | 3(x-2=2(x+8 | | 18+3x≥=30 | | 2/x=8/3 | | 5x-4=2x=1 |